Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films.
نویسندگان
چکیده
We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.
منابع مشابه
Photoisomerization of azobenzene derivatives in nanostructured silica.
A series of derivatized azobenzene molecules are synthesized such that one of the phenyl groups can be chemically bonded to mesostructured silica and the other, derivatized with dendrons, is free to undergo large-amplitude light-driven motion. The silica frameworks on which the motion takes place are either 150 nm thick films containing ordered hexagonal arrays of tubes (inner diameter about 2 ...
متن کاملLongitudinal anisotropy of the photoinduced molecular migration in azobenzene polymer films.
The effects of tightly focused, higher-order laser beams on the photoinduced molecular migration and surface deformations in azobenzene polymer films are investigated. We demonstrate that the surface relief is principally triggered by longitudinal fields, i.e., electric fields polarized along the optical axis of the focused beam. Our findings can be explained by the translational diffusion of i...
متن کاملEffect of nanozeolite 13X on thermal and mechanical properties of Polyurethane nanocomposite thin films
Polyurethane/zeolite 13X nanocomposite films were fabricated using solution casting method. The synthesized nanocomposite films were structurally characterized using SEM, TGA and tensile analysis. SEM images showed appropriate distribution of nanocrystalline zeolite particles within polyurethane matrix. Better thermal stability of nanocomposite films in comparison to neat polyurethane was shown...
متن کاملEffect of nanozeolite 13X on thermal and mechanical properties of Polyurethane nanocomposite thin films
Polyurethane/zeolite 13X nanocomposite films were fabricated using solution casting method. The synthesized nanocomposite films were structurally characterized using SEM, TGA and tensile analysis. SEM images showed appropriate distribution of nanocrystalline zeolite particles within polyurethane matrix. Better thermal stability of nanocomposite films in comparison to neat polyurethane was shown...
متن کاملPhotocontrolled manipulation of a microscale object: a rotational or translational mechanism.
In this paper the photocontrolled manipulation of solid materials on the surface of a liquid crystalline thin film is described. Three different types of films namely cholesteric liquid crystal (ChLC), compensated nematic liquid crystal (NLC) and nematic LC were used. The rotational and translational manipulation of the microscale solid object was induced by irradiation of light and mode of man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2016